If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-20x-6=0
a = 50; b = -20; c = -6;
Δ = b2-4ac
Δ = -202-4·50·(-6)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-40}{2*50}=\frac{-20}{100} =-1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+40}{2*50}=\frac{60}{100} =3/5 $
| 2x=1/4x+4 | | 1-4y=20 | | x*0.45=100 | | x*45=100 | | 4x-48=-9x+102 | | x*45=00 | | 3-1/6b=-1 | | 5(1)+15y=30 | | 8x+1=-63 | | 8(10)+2=10x-18 | | 8x-7=51-2 | | -70+9x=3x+32 | | 5(3)+15y=30 | | 7x-1=6x+4 | | 15x+8=40+13 | | 4(3)+12y=32 | | 4(5)+12y=32 | | p³=0.064 | | -153+2x=67-8x | | 180=(6x-48)+(4x+38) | | 2x-6+-40=14 | | 3=5p | | 24x+6(-10)=13 | | 14=2(x+1) | | F(x)=-3x-10 | | 8x+2=10x-18 | | 14=2(x=1) | | F(x)=-3x+-10 | | J=8/5(b-22) | | -4(1/2)=y+8 | | 27m-27=81 | | x+6+x+9+3x+5=30 |